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We investigate certain properties of the Hamiltonian systems, connected with the beha- 

vior of two functions: of the bilinear form of the canonical variables Q and of the Poin- 

care’s Function Q*. In particular we show that, when a phase point moves along a 
“straight” path, the elementary Hamiltonian operation represents the total differential 

of the difference (Q - Q*f. In the case of periodic orbits we establish that the Hamil- 

tonian operation is multivalued, this being the consequence of the cyclic character of 
the Poincark’s function Q*. 

We investigate certain quantities which remain invariant under unrestricted, completely 

canonical transformations, and indicate the conditions which are necessary for existence 
of the integrals containing secular terms. 

Kepler’s problem is used to illustrate the results obtained. 

1. Gensrrl rrlrtfonrhip8. As we know, the state of a Hamiltonian system is 
described by the following canonical system of equations : 

dq. 
-l+, J$_g_ 
dt 

i 
f3=1, 2, . . .‘ L) (~.~I 

3 

Multipiying Eq, (1.1) respectively by Pj and qj , adding and summing over j , we 
obtain the differential relation for the bilinear form Q @, q) of the canonical variables 

Following Poincard f1] we introduce the function Q* (Poincart! denotes this function 

by’n without the asterisk) by means of the differential relation 

0.3) 

The function Q* is defined here with the accuracy of up to an additive constant which 
depends on the initial state parameters. Eliminating the second term from the right-hand 
sides of (1.3) and (1.2) and noting that the Hamiltonian H (r, pt q) is defined by 

k 

H(t9 Pt Q) = 2 PjQj’-L 
i=l 

(pi= +-) 

we easily obtain 
. 

Ir 

d(Q--62*)=x pjdqj-Hdt=Ldt 

i=l 
(1.4) 

This enables us to formulate the following theorem. 

Theorem 1.1. Let the phase point N* (p, q) of the dynamic system (1. I.) whose 
Hamiltonian is H = H (t, p, q) move in the Z&dimensional phase space Eak. In this 

case. when the actual motion takes place along a straight path, the elementary Hamil- 
tonian operator Ldt represents the total differential of the difference between the bili- 
near form Q of the canonical variables and the Poincard’s function Q*. 
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Corollary 1.1. The condition that 

6 (8 - Q*) 12; = 0 (1.5) 

must hold (necessity), when the representative point of the system moves in the (k + I)- 

dimensional enlarged configuration space A (qjv t) along a “straight” path from the 

position A, (p)l’, tJ to the position AZ (qy), tz). This follows directly from the Hamil- 

ton’s principle by virtue of (1.4). 

Theorem 1. 2. The converse is also true, i. e. if the condition (1.5) holds along 

some path, this path is a straight line. 
This result is obtained by considering the variation of the difference (Q - Q*). Taking 

into account the fact that the variational process is isochronous (6t = 0) and, that the 
variations of the generalized coordinates qj at the end points are zero (Sq\” =O, 6#’ = 0). 

weeasilyobr~:np-n.)::=~{~ (,j*-~)~p~-~~(p~*+~)~q~}~~~o 

L j=l 3 

These in turn yield the Hamiltonian equations (1.1). which proves the sufficiency of 

the condition (1. 5). 

Relation (1.4) is valid for all reversible and irreversible Hamiltonian systems. It was 
obtained earlier p, 21 for the conservative systems, i. e for the cases when the general- 

ized energy integral H (P, 9) = h exists. 

2. Multivrluednerr of the Hlmiltonirn operator in the ~180 of 
periodic orbits, Suppose that the Hamiltonian system (1.1) admits a z-periodic 

solution pj (t) and qj (t) and the phase point N * (p, q) executes a periodic motion along 

a closed curve (c). Let us find the Hamiltonian operator for the motion of the phase point 

N* (P, q) along the cycle (c). Integrating (1.4) and noting that 

Pj (t + T) = Pj tt)l qj Ct + z, = qj tt)l Q (t + 

we obtain 

+ 
Ldt=--a (a = 62’ (f + 7) - P*(t)) 

fC) 

which can be also written as 
7 k 

\z pjdqj-Hdt=-a 
iJ j=l 

z) = n (t) 

(2.1) 

(2.2) 

Thus the Hamiltonian operator changes its value by a cyclic constant a during the time 
z of a single passage round the circuit (c) . 

In the natural conservative systems the phase flux moves along the isoenergetic surface 

H (P, 4 = T’ (~9 d + T’ (4) = h (2.3) 

Here T* (p, q) is the associated kinetic energy, v (q) is the potential energy and h 
is the energy constant, 

For such systems the circulation r over the cycle (c) by virtue of (2.2) and (2.3) is as 

follows 133 : 
r(c) = f.$ i pj dqj = - $ qj dpj = hr - a (2.4) 

(c) 5-i w 

The circulation r (c) can be expressed in terms of the kinetic energy averaged over 
the period t , i. e ( T (z)) . Indeed, by (2.1) and (2.3) we have 
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t 

<T (T)) = f s hz--a 
T* (P W. q (t)) dt = 22 

0 
(2.5) 

Consequently the circulation r (c) is equal to 

r (‘) = ~ ~ Pj ‘Qj = 2~ (T (T)) (2.6) 

(cl i=l 

In many cases the cyclic constant a, and consequently the circulation r (c) , can be 

expressed very simply in terms of the energy constant h and the period T. 
Let a conservative system move in a force field whose potential energy v (9) is a 

homogeneous function of the generalized coordinates qj of degree n while the associated 

expression of kinetic energy T* (q, p) is a quadratic form of the generalized impulses 

Pi and an (-v)-th degree homogeneous function of the generalized coordinates qj. As 

we know [Z], the cyclic constant a is 
2+%7-n 

u = 2 + y + n fzt (h # 01, a = - 22 <T (T)) (h = 0) (2.7) 

when the motion is periodic, therefore by (2.4) we have 
2n 

r(C)= 2+Y+n hq ut+oj, r (c) = - a (h = rl) (2.3) 

We shall illustrate this on the Kepler’s problem. Let a unit mass (m = 1) attracted by 

a force situated at 0 the potential of which is V = - p / T (p is the reduced mass), 
execute a periodic motion along an elliptic orbit (c). We find the value J assumed by 

the Hamiltonian operator during a passage along the orbit (c). Using the tagrangian 

together with the integral of the surface elements cdt = r-%&Y and the well known rela- 

tions of the two-body problem [3, 41 

p=r(1+ecos6), h=-p/20, c = 1/F; Vu (i- 8 

we obtain 2n 

L.&h&ii 

Cc) n 
(2.10) 

Here r is the radius vector 6 is the true anomaly, o is the major semiaxis of the 
ellipse, e is the eccentricity, c is the area constant and z is the period_ 

The integral appearing in the right-hand side of (2.10) is 
an 

s 

d6 2n 

0 
1+ecoa6 = vm 

Utilizing the value of the period T we finally obtain 

J=hz- 4hz = - 3hT (T = 2na*’ / v/II) 

Since J is equal to minus a, then by virtue of (2.3), the circulation r (c) = hr - 

- a = - 2hT. 

The same result could be obtained directly from (2. 8). noting that in the Kepler’s 
problem we have v = 0 and II -1 - 1. 

Theorem 2.1. Let the phase point of a system consisting of N gravitating point 
masses execute a periodic motion along a certain curve (c) , with the energy constant 
different from zero (h # 0). 
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Then the cyclic constant a and the circulation I’ (c) are, respectively, 

2-i-m 
z=2-_mhz, r (4 = 2 _ m 

--_ hf 
(h + 0) (2.11) 

provided that the force of attraction between the particles is inversely proportional to 
the (m f 1)- th power of the distance between them. 

This follows directly from (2.7) and (2.8). remembering of course that for the gravi- 
tating system in question we must set Y = 0 and n. = - m. 

Corollary 2.1 If h # 0, no periodic motion is possible for the phase point 
N* (P, 9) of the gravitating system under consideration at m = 2. 

When m = 2 , the phase point N* (p, q) can only execute a periodic motion of the 
parabolic type (h = 0) which agrees with the motion of a material point in a central 

force field [5]. 

3. Certain invariant8 under completely canonicrl trrntformr- 
tionfi. We consider, so called, unrestricted, completely canonical transformation with 

its functional determinant D different from zero 

(3.1) 

In addition, the domain G of changing of the variables (pi* qj) transforms into the 
domain G’ of changing of the variables (1Jjy Qj) in one-to-one correspondence, and the 

cycle (c) transforms into the cycle (c)j. 
Since the tiansformation (3.1) is unrestricted, we can use qj and Qj (i = 1, 2, ...* k) 

as the independent variables. 

Assuming V = V (qj, Qj) as a generating function, we can write the following basic 

differential relations defining the completely canonical transformation [6] 

k k 

~ PjdQi= ~ Pjdqj +dV(qj, Qj) 
i=l i=l 

(3.2) 

Here the new Hamiltonian function H’ (t, P. Q) is obtained from the original function 

H (t, p, q) by simple change of variables (3. l), so that 

H (t, p, q) = H’ (t, p, (8 (3.3) 

Theorem 3.1. Let the phase point N* (p, q) of the Hamiltonian system (1.1) 
moving along an isoenergetic surface H (p, qj = k execute a periodic motion in the 

phase space E2” over some cycle (c). Then at any completely canonical transformation 

(3.2) the product of the period 7 and the average kinetic energy ( 2’ (7)) is an invariant. 

This follows directly from the condition of invariance of the circulation r (c) . Hence, 
it implies by virtue of (2. 5) that the quantity (hi - cc) when h # 0 and the cyclic 
constant a when h = 0 are also invariants. 

4. On certain integral8 containing 8eculrr terms. ‘,et 

Qj = Qj (t, ai), Pj = Pj (t, ‘i) (i = I, 2, ., k) (4.1 1 

be the solutions of some Hamiltonian system (1.1). Here ai (i = 1, 2, . . . . 2k) denote 
the constants of integration. Following Poincare/ p1 we introduce 2k functions of the 

(4.2) 
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with respect to t, hy virrue of (1.1) and (1.2). we obtain 

Further differentiating (1.3) with respect to ai 

noting that 

and simplifying, we obtain 

Let us introduce additional 2k functions of the form 

(t = I, 2,. . ., zk) 

(4.3) 

(4.4) 

(4.5) 

Differentiating Ji* with respect to t by virtue of (1. l), we obtain 

If we now differentiate (1.2) with respect to ai and use (4.3). after simplification we 

arrive at dJi* a 
dt =q 

which by virtue of (1.4) can be written as 

dJi* a_c 
dt =q 

Formulas (4.4) and (4.6) on integration 
as2 

Ji $ Ji* = 2 d~1. + const, 
, 

(-g (Q - nt)) (4.6) 

(i = I. 2.. . ., %k) 

readily yield 
as2* 

Ji - Ji*=2x+const 
I 

(4.i) 

(4.3) 

where the constants appearing in the right-hand sides depend on the values of the con- 

stants (a,, a2, . . . , a&. 

Theorem 4. 1. Suppose that a conservative system moves in a force field whose 
potential v (q) is an nth degree homogeneous function of the generalized coordinates 

qj while the associated kinetic energy T* (9, p) is a quadratic form of the generalized 
impulses pj, and a homogeneous function of (- v)-th degree in the generalized coordi- 

nates qj* Then, if the condition 1 + n + Y = 0 holds, integrals of the form 

Ji = (1 -- 2n) Pit + const (f+ = az3 I aq (4.2) 

containing secular terms exist provided that the energy constant h is not zero. 

Indeed, we know that if the conditions of homogeneity of the functions v (9) and 
T* (9, P) cited above hold, then we have the following relation [Z-] 

d/dt(Q+CX*)=(1 -2n)IL+2(1+n+Y)T* w (P. Q) - h) (4.10) 

Further, utilizing the condition 1 + n + Y = 0 and noting that H (p (t, a,),, 
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4 07 ai)) = H* (a,, . . . . %rc) = h we obtain, on integrating (4.10). integrals of the form 
(4.9) which can be written as 

g + i qj $- = (1 - 278) pit + const 
1 j=l i 

(h + 0) (4.11) 

When the motion is parabolic (h = 0) , the secular terms vanish and the integrals 

become 
_%+i qj$=conSt (h = o) (4.12) 

1 j=l i 

We note that the condition 1 + n + Y = 0 holds for an unrestricted system consisting 

of N point masses gravitating according to the Newton’s Law, since iu this case we have 
v = 0 and n = - 1. Consequently by Theorem 4.1 it follows thar w;,en h # 0 , inte- 

grals of the type 
Ji = 3&r + const 

aH 
Pi=~, i=l, 2 ,..., 2kt 

i 
(4.13) 

exist, which agrees with the result obtained earlier by Poincard n]. 
We can therefore write the following Hamiltonian ior the Kepler’s problem discussed 

previously, using the Cartesian coordinates as generalized coordinates q1 = z and 

qz = y. Wethenhave H=1/2(p,2+Pv2)_p/r=h (I’=_) 

Using further (1.2), (1.3) and the Euler’s theorem on homogeneous functions, we easily 
obtain dQ CL dQ* 

--&=21l-+T, -=f+- 
dt 

which in turn leads to 
d/dt (at + Q*) = 3h (h = - 1”/2a) 

The latter expression and (4.4) on integrating and differentiating with respect to para- 

meter al yield integrals of the type (4 13). 

In particular, for the Kepler’s problem discussed above we can set a, = a, a2 = e 

and take into account the fact that 

5 = rcos 6 = a (cosE - e), y = rsinf) = 01/i - ZsinE 

(E is the eccentric anomaly), thus obtaining without difficulty 

Px = _ p’laa-‘C sin E cos E 

1 -ecosE ’ 
p, = p’l*a-‘l~ (1 _ ,zp 

i-ecosE * 
Q = ea’l*pl/* sin E 

The integrals (4.13) in this case become 
aPx 

Jl=Z~+y~+z&&r”t &=&&j 

aP, 
Jz=xx+y 
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